Problem 4.35

In Example 4.3:
(a) If you measured the component of spin angular momentum along the x direction, at time t, what is the probability that you would get $+\hbar / 2$?
(b) Same question, but for the y component.
(c) Same, for the z component.

Solution

In Example 4.3 there's a charged particle with spin $1 / 2$ at rest that's placed in a uniform magnetic field: $\mathbf{B}=B_{0} \hat{\mathbf{z}}$. The Hamiltonian matrix is given in Equation 4.158 on page 172.

$$
\begin{align*}
\mathrm{H} & =-\gamma \mathbf{B} \cdot \mathbf{S} \tag{4.158}\\
& =-\gamma\left(B_{0} \hat{\mathbf{z}}\right) \cdot \mathbf{S} \\
& =-\gamma B_{0} \mathrm{~S}_{z} \\
& =-\gamma B_{0} \frac{\hbar}{2}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\frac{\gamma B_{0} \hbar}{2} & 0 \\
0 & \frac{\gamma B_{0} \hbar}{2}
\end{array}\right)
\end{align*}
$$

Determine the eigenvalues.

$$
\begin{gathered}
\left|\begin{array}{cc}
-\frac{\gamma B_{0} \hbar}{2}-\lambda & 0 \\
0 & \frac{\gamma B_{0} \hbar}{2}-\lambda
\end{array}\right|=0 \\
\left(-\frac{\gamma B_{0} \hbar}{2}-\lambda\right)\left(\frac{\gamma B_{0} \hbar}{2}-\lambda\right)-(0)(0)=0 \\
\left(\lambda+\frac{\gamma B_{0} \hbar}{2}\right)\left(\lambda-\frac{\gamma B_{0} \hbar}{2}\right)=0 \\
\lambda= \pm \frac{\gamma B_{0} \hbar}{2}
\end{gathered}
$$

Let

$$
\lambda_{-}=-\frac{\gamma B_{0} \hbar}{2} \quad \text { and } \quad \lambda_{+}=+\frac{\gamma B_{0} \hbar}{2} .
$$

Determine the eigenfunctions associated with these eigenvalues.

$$
\left.\begin{array}{cr}
\left(\mathrm{H}-\lambda_{-} \mathrm{I}\right) \mathrm{x}_{-}=0 & \left(\mathrm{H}-\lambda_{+} \mathrm{I}\right) \mathrm{x}_{+}=0 \\
\left(\begin{array}{cc}
0 & 0 \\
0 & \gamma B_{0} \hbar
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} & \left(\begin{array}{cc}
-\gamma B_{0} \hbar & 0 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
0=0 \\
\gamma B_{0} \hbar x_{2}=0
\end{array}\right\} \quad-\gamma B_{0} \hbar x_{1}=0, ~\left(\begin{array}{l}
x_{1}=0 \\
x_{2}=0
\end{array}\right\} \begin{aligned}
& \mathbf{x}_{+}=\binom{x_{1}}{x_{2}}=\binom{0}{x_{2}}=x_{2}\binom{0}{1}
\end{aligned}
$$

The multiplicative factors, x_{1} and x_{2}, are arbitrary but chosen so that the eigenfunctions are normalized.

$$
x_{-}=\binom{1}{0}=\chi_{+} \quad x_{+}=\binom{0}{1}=\chi_{-}
$$

x_{-}happens to be the spinor that represents spin-up, and x_{+}happens to be the spinor that represents spin-down. Make a change in notation for the sake of consistency.

$$
E_{+}=\lambda_{-}=-\frac{\gamma B_{0} \hbar}{2} \quad E_{-}=\lambda_{+}=+\frac{\gamma B_{0} \hbar}{2}
$$

These are the possible energies of the particle; negative energy is associated with spin-up, and positive energy is associated with spin-down. Because the Hamiltonian is time-independent, the Schrödinger equation,

$$
i \hbar \frac{\partial \chi}{\partial t}=\mathrm{H} \chi
$$

is separable and has a general solution that is a linear combination of the stationary states multiplied by their respective wiggle factors. This is due to the principle of superposition.

$$
\begin{aligned}
\chi & =a \chi_{+} e^{-i E_{+} t / \hbar}+b \chi_{-} e^{-i E_{-} t / \hbar} \\
& =a\binom{1}{0} e^{-i\left(-\frac{\gamma B_{0} \hbar}{2}\right) t / \hbar}+b\binom{0}{1} e^{-i\left(\frac{\gamma B_{0} \hbar}{2}\right) t / \hbar} \\
& =a\binom{1}{0} e^{i \gamma B_{0} t / 2}+b\binom{0}{1} e^{-i \gamma B_{0} t / 2} \\
& =\binom{a e^{i \gamma B_{0} t / 2}}{b e^{-i \gamma B_{0} t / 2}}
\end{aligned}
$$

a and b are arbitrary but subject to the normalization condition: $|a|^{2}+|b|^{2}=1$. Use Mr. Griffiths's choice of $a=\cos (\alpha / 2)$ and $b=\sin (\alpha / 2)$ for convenience.

$$
\chi=\binom{\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}}{\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}}
$$

Part (a)

The probability of measuring $+\hbar / 2$ for the component of spin angular momentum along the x-direction is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{+}^{(x)}\right\rangle$.

$$
\begin{aligned}
P\left(+\frac{\hbar}{2}\right) & =\left|c_{+}^{(x)}\right|^{2} \\
& =\left|\left\langle\chi_{+}^{(x)} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{+}^{(x) \dagger} \chi\right|^{2}
\end{aligned}
$$

The normalized eigenfunction (or rather eigenspinor in this context) associated with the eigenvalue $+\hbar / 2$ for S_{x} is in Equation 4.151 on page 169.

$$
\chi_{+}^{(x)}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

Therefore,

$$
\begin{aligned}
P\left(+\frac{\hbar}{2}\right) & =\left|\frac{1}{\sqrt{2}}\binom{1}{1}^{\dagger}\binom{\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}}{\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}}\right|^{2} \\
& =\frac{1}{2}\left|\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}}{\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}}\right|^{2} \\
& =\frac{1}{2}\left|\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}+\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}\right|^{2} \\
& =\frac{1}{2}\left[\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}+\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}\right]\left[\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}+\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}\right]^{*} \\
& =\frac{1}{2}\left[\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}+\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}\right]\left[\cos \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}+\sin \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}\right] \\
& =\frac{1}{2}\left[\cos { }^{2}\left(\frac{\alpha}{2}\right)+\cos \left(\frac{\alpha}{2}\right) \sin \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t}+\sin \left(\frac{\alpha}{2}\right) \cos \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t}+\sin ^{2}\left(\frac{\alpha}{2}\right)\right] \\
& =\frac{1}{2}\left[1+\sin \left(\frac{\alpha}{2}\right) \cos \left(\frac{\alpha}{2}\right)\left(e^{i \gamma B_{0} t}+e^{-i \gamma B_{0} t}\right)\right] \\
& =\frac{1}{2}\left[1+\left(\frac{1}{2} \sin \alpha\right)\left(2 \cos \gamma B_{0} t\right)\right] \\
& =\frac{1}{2}\left(1+\sin \alpha \cos \gamma B_{0} t\right) .
\end{aligned}
$$

Part (b)

The probability of measuring $+\hbar / 2$ for the component of spin angular momentum along the y-direction is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{+}^{(y)}\right\rangle$.

$$
\begin{aligned}
P\left(+\frac{\hbar}{2}\right) & =\left|c_{+}^{(y)}\right|^{2} \\
& =\left|\left\langle\chi_{+}^{(y)} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{+}^{(y) \dagger} \chi\right|^{2}
\end{aligned}
$$

The normalized eigenfunction (or rather eigenspinor in this context) associated with the eigenvalue $+\hbar / 2$ for S_{y} is derived in part (a) of Problem 4.32.

$$
\chi_{+}^{(y)}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} i}=\frac{1}{\sqrt{2}}\binom{1}{i}
$$

Therefore,

$$
\begin{aligned}
P\left(+\frac{\hbar}{2}\right) & =\left|\frac{1}{\sqrt{2}}\binom{1}{i}^{\dagger}\binom{\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}}{\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}}\right|^{2} \\
& =\frac{1}{2}\left|(1-i)\binom{\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}}{\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}}\right|^{2} \\
& =\frac{1}{2}\left|\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}-i \sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}\right|^{2} \\
& =\frac{1}{2}\left[\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}-i \sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}\right]\left[\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}-i \sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}\right]^{*} \\
& =\frac{1}{2}\left[\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}-i \sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}\right]\left[\cos \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}+i \sin \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}\right] \\
& =\frac{1}{2}\left[\cos { }^{2}\left(\frac{\alpha}{2}\right)+i \cos \left(\frac{\alpha}{2}\right) \sin \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t}-i \sin \left(\frac{\alpha}{2}\right) \cos \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t}+\sin ^{2}\left(\frac{\alpha}{2}\right)\right] \\
& =\frac{1}{2}\left[1+i \sin \left(\frac{\alpha}{2}\right) \cos \left(\frac{\alpha}{2}\right)\left(e^{i \gamma B_{0} t}-e^{-i \gamma B_{0} t}\right)\right] \\
& =\frac{1}{2}\left[1+i\left(\frac{1}{2} \sin \alpha\right)\left(2 i \sin \gamma B_{0} t\right)\right] \\
& =\frac{1}{2}\left(1-\sin \alpha \sin \gamma B_{0} t\right) .
\end{aligned}
$$

Part (c)

The probability of measuring $+\hbar / 2$ for the component of spin angular momentum along the z-direction is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{+}\right\rangle$.

$$
\begin{aligned}
P\left(+\frac{\hbar}{2}\right) & =\left|c_{+}\right|^{2} \\
& =\left|\left\langle\chi_{+} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{+}^{\dagger} \chi\right|^{2}
\end{aligned}
$$

The normalized eigenfunction (or rather eigenspinor in this context) associated with the eigenvalue $+\hbar / 2$ for S_{z} is in Equation 4.149 on page 169.

$$
\chi_{+}=\binom{1}{0}
$$

Therefore,

$$
\begin{aligned}
& P\left(+\frac{\hbar}{2}\right)=\left|\binom{1}{0}^{\dagger}\binom{\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}}{\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}}\right|^{2} \\
& =\left|\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}}{\sin \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}}\right|^{2} \\
& =\left|\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}\right|^{2} \\
& =\left[\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}\right]\left[\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}\right]^{*} \\
& =\left[\cos \left(\frac{\alpha}{2}\right) e^{i \gamma B_{0} t / 2}\right]\left[\cos \left(\frac{\alpha}{2}\right) e^{-i \gamma B_{0} t / 2}\right] \\
& =\cos ^{2}\left(\frac{\alpha}{2}\right) \text {. }
\end{aligned}
$$

